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A B S T R A C T   

Alzheimer’s disease (AD) is now difficult to be identified for clinicians, especially, at its prodromal stage, mild 
cognitive impairment (MCI), because of no obvious clinical symptom and few impacts on daily life at this phase. 
In addition, energy distribution differences of brain atrophies reflected in structural magnetic resonance imaging 
(sMRI) images between MCI patients and older healthy controls (HC) are minimal and subtle, which are difficult 
to be captured by the spatial analysis. In this study, we propose a novel method (namely AD-WTEF) to identify 
AD and MCI patients from HC subjects by extracting the wavelet transformation energy feature (WTEF) of the 
sMRI image. AD-WTEF firstly transforms each scan of the preprocessed sMRI image by wavelet to obtain its 
directional subbands with the same size at different transformation levels. And then, based on the anatomical 
automatic labeling (AAL) atlas, AD-WTEF constructs a new brain mask to segment the subbands at the same 
direction and transformation level into different energy regions of interest (EROIs). Thirdly, by averaging co-
efficients in an EROI, AD-WTEF gets an energy feature, following that energy features of different EROIs are 
connected to form an energy feature vector for describing the subbands at the same direction and transformation 
level. As a result, these energy feature vectors are further concatenated to be a WTEF of the sMRI image. Finally, 
the nearest neighbor (NN) classifier is selected and used for AD identification. Compared with other seven state- 
of-the-art methods, our AD-WTEF can effectively identify AD patients using the subtle energy distribution dif-
ferences of sMRI images. Furthermore, experimental results indicate that our AD-WTEF can also find important 
brain ROIs related to AD.   

1. Introduction 

Alzheimer’s disease (AD), as a main cause of dementia, is a pro-
gressive neurodegenerative disease characterized by many symptoms 
such as memory loss and cognitive decline, which has received a lot of 
attentions from medical field and academia [1–3]. As the major form of 
dementia, AD had affected 26.6 million people worldwide in 2006 and 
has been predicted to affect 1 in 85 people by 2050 [4,5]. The main 
reason is that the early symptoms do not affect the normal daily activ-
ities, so few attentions are put on to the early stage of this disease. 
However, along with the development of neurodegeneration, a person 
with AD will not deal with his daily life and not return health again until 

to death. Taking the year 2010 as an example, according to the 2010 
World Alzheimer Report, there are an estimated 35.6 million people 
worldwide living with dementia at a total cost of more than US$600 
billion in 2010 [6,7]. Hence, early diagnosis of AD based on clinical test 
and magnetic resonance imaging (MRI) is emergently needed to delay or 
stop the progression of this disease. 

According to the type of features extracted from the sMRI image, the 
existing works about AD identification can be roughly categorized into 
the spatial domain-based [8–11] and the transformation domain-based 
[12,13]. For the spatial domain-based method, features can be easily 
extracted by analyzing structures of the sMRI image [14], for example, 
the simplest voxel-based features consist in directly using the voxels of 
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the tissue probability maps [15–20]. Though some techniques are pro-
posed to reduce the impacts of noisy and dimensionality such as 
smoothing, downsampling, feature selection, and automated anatomical 
labeling (AAL) atlas [21–25], problems of the high dimensionality and 
noise are only alleviated to a certain extent. For the transformation 
domain-based method, images are decomposed or transformed into the 
frequency domain to obtain subbands at different directions and trans-
formation levels using the transformation tools such as wavelet, courtlet, 
and shearlet [26,27], and then energy features are obtained by aver-
aging coefficients contained in these subbands. Hence an image is rep-
resented by a subband energy feature vector or mapping in performing 
classification. However, impacts of the noise and dimensionality can be 
only reduced at a relatively low decomposition level and making a 
appropriate segmentation to the subband is also difficult in extracting 
energy features [28–30]. So, challenges of this kind of method are how 
to extract powerful energy features at a low decomposition level and 
how to reasonably segment subbands for capturing energy distributions 
of the subband. 

Artificial intelligence (AI) had been recognised as a potential and 
powerful tool to predict disease outcome in many clinical situations 
many years ago [31,32]. In the field of machine learning, convolutional 
neural networks, as an outstanding branch of deep learning applications, 
have earned major attention in medical image analysis domain [33–36]. 
For example, Sherbet et al. [31] used AI-based technology in cancer 
management, and Li et al. [37] proposed multi-resolution convolutional 
networks for lung nodule detection. However, the sMRI image, as an 
important assistance in AD diagnosis, is consisted of many brain scans, 
which contains more than millions of voxels, in contrast the number of 
existing samples is small. As a result, few works in AI for AD identifi-
cation are proposed because of the small sample problem in the past. 
Additionally, features extracted from the sMRI image by AI-based 
technology are abstract, therefore it is difficult by means of those ab-
stract features to find pathological tissues related to AD and give a 
reasonably biological explanation. But it can be believed that AI-based 
technology must be widely used for AD identification in the future 
with the number of AD samples increasing. 

To make full use advantages of the spatial domain-based and the 
transformation domain-based methods, in this study, a novel method 
(namely AD-WTEF) is proposed to identify subjects with AD, MCI and 
HC by extracting the wavelet transformation energy feature (WTEF) 
from the sMRI image. After preprocessing for the sMRI image, we can get 
gray mater (GM), white mater (WM) and cerebrospinal fluid (CSF) tissue 
images of a brain. The GM image mostly related to AD is selected to be 
experimental data. To obtain the overall energy distribution of brain 
atrophies, each scan of the GM image is firstly transformed by wavelet in 
obtaining the directional subbands with the same size at different 
transformation levels. Secondly, based on anatomical automated label-
ling (AAL) atlas, a brain mask consisted of 90 regions of interest (ROIs) is 
constructed to segment the subbands at the same direction and trans-
formation level into 90 energy ROIs (EROIs). And then, an energy 
feature is got by averaging coefficients in an EROI, following that an 
energy feature vector is formed to describe the subbands at the same 
direction and transformation level by connecting energy features of the 
90 EROIs. These energy feature vectors are subsequently concatenated 
to be a WTEF for representing the sMRI image. Finally, the WTEF is 
input into the nearest neighbor (NN) classifier for AD identification. It is 
obvious that the sMRI image is firstly transformed by wavelet in the 
frequency domain, and then subbands are segmented to obtain the 
EROIs in the spatial domain. Therefore, advantages of the spatial 
domain-based and transformation domain-based methods are fully used 
by AD-WTEF, and associations between different brain tissue regions are 
implicitly maintained. Results of comparing with other seven state-of- 
the-art methods suggest that the AD-WTEF can effectively identify AD 
patients. Meanwhile, experiments to find ROI related to AD also indicate 
that our AD-WTEF can capture the subtle energy distribution differences 
reflected in the sMRI images of subjects with AD, MCI, and HC. 

There are three main contributions in the AD-WTEF: (1) A frame-
work using wavelet to transform the sMRI image into directional and 
multiscale subbands and then segmenting those subbands by a con-
structed brain mask is proposed to extract energy features for AD 
identification; (2) Instead of using AAL atlas directly to the GM image, 
the constructed brain mask that consists of 90 ROIs is used for reason-
ably segmenting these subbands into 90 EROIs; (3) The technique of 
multiscale analysis is introduced to transform scans of the sMRI image 
and construct energy feature vectors at different transformation levels in 
identifying AD patients, which provide new clues for understanding the 
pathology and new avenues to identify the brain diseases. 

The rest of this paper is organized as follows. Section 2 gives some 
related works on AD identification. In Section 3, materials and meth-
odology are introduced. Evaluation metrics and experimental results are 
included in Section 4. Discussion is shown in Section 5. Finally, con-
clusions are given in Section 6. 

2. Related work 

For the spatial domain-based method, much higher dimensionality of 
the voxel-based feature is usually noisy and most of the voxel-based 
features might be not related to AD [38–44]. Therefore features of 
considering regions of interest (ROI) of the brain tissue are proposed to 
depict the sMRI image [45–48]. Ahmed et al. [49] combined hippo-
campus visual features and cerebrospinal fluid (CSF) volume to yield an 
automatic classification framework for AD identification. Khedher et al. 
[50] presented a new computer aided diagnosis system that allows the 
early AD diagnosis by using tissue-segmented brain images. Although 
the dimensionality and noise of the ROI-based feature is reduced to some 
extent, only a part of the brain volume is used as features such as gray 
matter probability and hippocampal volumes [51–54]. It is hard to give 
a reliable representation of the sMRI image with multiple lesions 
occurred. For the usage of whole brain structural information, the brain 
surface-based features are constructed for AD identification by 
analyzing the cortical thickness or cortical curvature [55–57]. For 
example, Dai et al. [58] established a network based on a kernel-based 
method for each subject by using mean cortical thickness and the 
network edges for AD identification. The challenge of this kind of fea-
tures is how to select vertexes of the brain cortex, and they also face the 
problem of higher dimensionality. 

In the perspective of transformation, multi-scale analysis can be 
introduced to capture energy features of the sMRI image at different 
directions and decomposition levels. To the best of our knowledge, most 
of the features used to identify AD patients belong to the spatial domain- 
based. There were few existing features in accordance with the trans-
formation domain-based method for AD identification in the past 
decade. In nowadays, the transformation domain-based method gradu-
ally appears, for example, Zhang et al. [59] utilized stationary wavelet 
entropy to extract the texture features of an MRI for AD classification. 
Jha et al. [60] proposed a novel computer-aided diagnosis (CAD) 
cascade model to discriminate patients with the AD from healthy con-
trols by using the dual-tree complex wavelet transforms. In addition, 
Bendib et al. [61] introduced a new brain MRI segmentation framework 
that combines a powerful multiresolution/multiscale image analysis 
technique with a robust weakly used ensemble learning paradigm for the 
segmentation of gray matter, white matter, and cerebrospinal fluid. So, 
it is reasonable to introduce multi-resolution analysis to extract features 
from the sMRI image for AD identification. 

In addition, Rafiee et al. [62] proposed a two-stage unsupervised 
segmentation approach based on ensemble clustering to extract the 
focused regions (namely, ROI) from low depth-of-field images. The first 
stage is to cluster image blocks in a joint contrast-energy feature space 
into three constituent groups. In stage two, a binary saliency map is 
constructed from the relevant blocks at the pixel level. Then a set of 
morphological operations is employed to create the ROI from the map. 
In Rafiee’s segmentation approach, image blocks are represented by 
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features computed in spatial and frequency domains, which is similar 
with our proposed method in constructing features of the sMRI image. 
Obviously, Rafiee’s segmentation approach is suitable to the low 
depth-of-field image, which is different from our proposed method used 
for the sMRI image. The reason is that the constructed brain mask based 
on AAL is not used to divide the sMRI image to obtain brain ROIs, but to 
divide the wavelet subbands to obtain subband EROIs; Furthermore, the 
sMRI is not a low depth-of-field image, but an image consisted of many 
scans, and ROIs of the AAL are defined by the experienced brain imaging 
specialist, which can ensure that features extracted from EROIs have 
specific biological meanings. 

3. Materials and methodology 

In this section, materials used in this study and their preprocessing 
are firstly introduced, and then methodology of extracting the wavelet 
transformation energy feature (WTEF) is given. 

3.1. Materials 

Data used in the preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni. 
loni.usc.edu). The ADNI was launched in 2003 as a public-private 
partnership, led by Principal Investigator Michael W. Weiner, MD. The 
primary goal of ADNI has been to test whether serial magnetic resonance 
imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) 
and early Alzheimer’s disease (AD). 

In order to assess the performance of our AD-WTEF, we select 480 
subjects from the ADNI database, composing of 90 AD, 280 MCI, and 
110 HC subjects. Among the 280 MCI subjects, 120 subjects converted to 
AD after 18 months are denoted as MCIc, on the contrary, 160 subjects 
not converted to AD after 18 months are denoted as MCInc. The detail 
demographic information of all the 480 subjects is given in Table 1. 
MMSE, F, and M in Table 1 are abbreviations of Mini Mental State Ex-
amination, Female, and Male, respectively. 

All selected subjects are preprocessed before they are used to test the 
AD-WTEF. Statistical parametric mapping (SPM8) [63] and voxel-based 
morphometry (VBM8) [6] software tools are selected to preprocess the 
sMRI images. After preprocessing steps of head motion correction, skull 
strap, segmentation, and smoothing, the size of a sMRI image is con-
verted to 121 × 145 × 121 gray matter (GM), cerebrospinal fluid (CSF), 
and white matter (WM) tissue images, and the voxel volume is 1.5×

1.5× 1.5 mm3. For a visual comparison of the original and the pre-
processed MRI images, an example of four scans of a sMRI image is 
shown in Fig. 1. 

At the experimental stage, the GM image mostly related to AD is 
selected to extract the WTEF, and four data sets are constructed to 
perform experiments, which are described as follows:  

1. AD/HC: containing 90 AD and 110 HC subjects;  
2. AD/MCI: containing 90 AD and 280 MCI subjects;  
3. MCI/HC: containing 280 MCI and 110 HC subjects;  

4. MCIc/MCInc: containing 120 MCIc and 160 MCInc subjects. 

It can be seen that the MCIc/MCInc is a challenging data set, as subjects 
in this data set belong to the same stage of AD, and there are subtle 
differences between GM images of these subjects. 

3.2. Methodology 

After preprocessing to the sMRI images, we can get their GM images. 
Firstly, we use wavelet to transform scans of the GM image so that the 
constructed mask can be conveniently used to segment subbands of the 
scans at the same direction and transformation level in constructing 
energy features and energy feature vectors. The WTEF of a GM image 
can be then obtained by concatenating these energy feature vectors at 
different directions and transformation levels. Finally, the NN classifier 
is selected to identify subjects with AD, MCI and HC. Fig. 2 gives the 
flowchart of our AD-WTEF. In the following, we will introduce the 
process of extracting WTEF from the GM image. 

According to previous works about AD identification, the GM image 
is divided into 90 (or 116, including 26 cerebellum tissue regions) re-
gions of interest (ROIs) by a mask called anatomical automated labeling 
(AAL) atlas [64]. These ROIs are used to construct spatial structural 
features. Different from those existing methods, AD-WTEF transforms 
each scan of the GM image to obtain its directional and multiscale 
subbands. For simplicity, these GM images are represented by a subject 
set, {I(i,j)}, i = 1,2,…,N, j = 1,2,…,M, where N = 480 is the number of 
all subjects and M = 121 is the number of scans of a GM image. 

Daubechies (db) wavelet has scaling and wavelet two functions. In 
multi-resolution analysis, the scaling function can be expressed as 

ϕ(x, y) =
∑N1− 1

k1=0

∑N2− 1

k2=0
α(k1,k2)ϕ(2x − k1, 2y − k2), (1)  

where α(0,0),…, α(N1− 1,N2− 1) are scaling coefficients. The wavelet func-
tion can be represented by a linear combination of the scaling functions 

ψ(x, y) =
∑M1− 1

k1=0

∑M2− 1

k2=0
β(k1,k2)ϕ(2x − k1, 2y − k2), (2)  

where β(0,0),…, β(M1− 1,M2− 1) are wavelet coefficients. 
Given the jth scan of the ith GM image I(i, j), we use db8 filter and 

stationary wavelet transformation-2 (swt2) to transform the scan into 
subbands with the same size at different transformation levels. After 
wavelet transformation, subbands of all scans are represented by {Si

j,l,k},

l = 1,…,L, k = 1,2,3,4, where l is the lth transformation level and k is 
the kth directional subband of the scan at the lth level. Because of that 
each transformation can generate 4 direction subbands at each level, so 
the total number of subbands of the ith GM image by L times trans-
formations is 4× M× L. For example, when i = 1, j = 1,L = 1, we can 
obtain 4 subbands of the 1th scan of the 1th GM image by L = 1 level 
transformation. Fig. 3 gives an instance of the wavelet transform on a 
scan with L = 2. There are 8 subbands in total with each of 4 subands at 
one level. 

To capture the brain atrophy information spatially distributed in 
different energy regions of interest (EROIs), a brain mask is needed to be 
constructed based on AAL atlas [64]. The single ROI mask set is firstly 
made by using AAL atlas contained 90 ROIs without cerebellum, which 
is denoted as {AALp,t}, p = 1,2,…,90, t = 1,2,…,91, where p is the pth 
single ROI mask and t is the tth scan of the pth single ROI mask. While, 
size and voxel volume of the single ROI mask separately are 91 × 109 ×

91 and 2× 2× 2 mm3, which are not accordance with the size and the 
voxel volume of the preprocessed GM images. So co-registration needs to 
be done between the single ROI mask and the GM image by SPM8. After 
co-registration, size and voxel volume of the single ROI mask change as 
121 × 145 × 121 and 1.5× 1.5× 1.5 mm3, respectively. Therefore, the 
whole brain ROI mask, denoted as {Maskt}, can be constructed by the 

Table 1 
Detail demographic information of the 480 subjects from the ADNI database.  

Type Gender Number Age MMSE  
(F/M)  (mean ± deviation)  (mean ± deviation)  

AD 40/50 90 76.93 ± 6.87  23.70 ± 3.55  
MCIc 67/53 120 77.57 ± 9.81  26.66 ± 2.84  
MCInc 71/89 160 74.73 ± 6.66  26.10 ± 3.88  
MCI 138/142 280 75.95 ± 8.29  26.21 ± 3.78  
HC 50/60 110 76.08 ± 4.98  28.24 ± 2.21   
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following equation: 

Maskt(x, y) = p, ifAALp,t(x, y) = 1, p = 1,…, 90, (3)  

where (x, y) is a position in the pth brain tissue ROI of the tth scan, t = 1,
2,…,121, x ∈ [1,121], and y ∈ [1,145]. Fig. 4 shows six scans of the final 
constructed whole brain ROI mask. 

Up to now, we have gotten subbands of GM images {Si
j,l,k} and a 

constructed mask {Maskt}. For subbands of the kth direction at the lth 
level of the ith GM image, an EROI set, {EROIi

l,k,p}, is represented by the 
following equation: 

EROIi
l,k,p = EROIi

l,k,p

⋃
Rp(x, y), p = 1, 2,…, 90 (4)  

where 

Fig. 1. An example of the original and the preprocessed sMRI images. The first row is original scans of the sMRI image; The second row is their corresponding 
preprocessed scans. 

Fig. 2. The flowchart of our AD-WTEF in extracting the WTEF and performing AD identification using the NN classifier.  
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Rp(x, y) =

{
Si
.,l,k(x, y), Mask(x, y) = p

0, Others
(5) 

The energy feature of an EROI of the kth direction at the lth level of 
the ith GM image can be computed by the following equation: 

ei
(l,k,p) =

∑Mi
l,k,p

m=1 EROIi
l,k,p(m)

Mi
l,k,p

, p = 1, 2,…, 90 (6)  

where Mi
l,k,p is the total number of coefficients contained in the pth EROI 

of the kth direction at the lth level of the ith GM image. For the subbands 
at the same direction and transformation level, we can obtain an energy 
feature vector based on Eq. (6), which can be represented by the 
following equation: 

Ei
(l,k) = [ei

(l,k,1), e
i
(l,k,2),…, ei

(l,k,90)]. (7) 

Thus, the wavelet transformation energy feature (WTEF) of the ith 
subject is extracted from its GM image based on a constructed mask by 
the L-level wavelet transform, which is denoted as following: 

WTEFi = [Ei
(1,1),…,Ei

(1,4),…,Ei
(L,1),…,Ei

(L,4)]. (8)  

For simplicity, the extracted WTEFs of all GM images of the subjects 
selected from ADNI database are denoted as a feature set, {WTEFi}, i =

1,2,…,N. 

Finally, the nearest neighbor (NN) classifier with chi-square distance 
is selected to classify those testing subjects in the experimental stage. 
Giving two extracted WTEFs denoted as V1 and V2, the chi-square dis-
tance D(V1,V2) between them is calculated by 

D(V1,V2) =
∑Q

n=1

(V1(n) − V2(n))2

V1(n) + V2(n)
, (9)  

where Q is the total number of all feature elements in each vector of V1 
and V2. In the classification phase, an unlabeled subject will be cate-
gorized into the class whose chi-square distance D is minimum. 

4. Evaluation metrics and experimental results 

In this section, Evaluation metrics used in this study are firstly 
introduced. Subsequently, we give results of comparing with other seven 
state-of-the-art methods. Finally, we estimate the optimal value of the 
wavelet transform level L by experiments on the four data sets. 

4.1. Evaluation metrics 

With obtained optimal estimation parameter L = 1, we will conduct 
experiments on AD/HC, AD/MCI, MCIc/MCInc and MCI/HC four data 
sets. At the experimental stage, we will perform n = 10 experiments 
with ten-fold cross validation on each of these four data sets. We use 
average classification accuracy (ACC), average specificity (Sp) and 

Fig. 3. An instance of the wavelet transform on a scan with L = 2.  

Fig. 4. Six scans of the constructed Maskt with their serial number t = 32, 48,54,68, 71,80.  
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average sensitivity (Se) of the ten experiments on each of the four data 
sets as evaluation metrics, which are expressed by formulas as 

ACC =
1
n
∑n

i=1

TPi + TNi

TPi + FPi + TNi + FNi
, (10)  

Sp =
1
n

∑n

i=1

TNi

FPi + TNi
, (11)  

Se =
1
n

∑n

i=1

TPi

TPi + FNi
, (12)  

where TPi is the number of correctly classified true positive subjects in 
the ith experiment, FPi is the number of incorrectly classified negative 
subjects in the ith experiment, TNi is the number of correctly classified 
true negative subjects in the ith experiment, and FNi is the number of 
incorrectly classified positive subjects in the ith experiment. 

4.2. Experimental results 

In this part, we compare our AD-WTEF with seven state-of-the-art 
methods. Jha et al. [59] extracted feature using the dual-tree complex 
wavelet transforms. Ahamed et al. [49] combined hippocampus visual 
features and cerebrospinal fluid (CSF) volume to yield an automatic 
classification framework. Zhang et al. [60] utilized stationary wavelet 
entropy to extract the texture features of an MRI. Khedher et al. [50] 
presented a new computer aided diagnosis system using 
tissue-segmented brain images. Dai et al. [58] established a network 
based on a kernel-based method for each subject by using mean cortical 
thickness and the network edges. For the method proposed by Li et al. 
[8], it is a method of segmenting hippocampus from the MRI image by 
deep learning, and we can directly use the hippocampus as feature of the 
sMRI image in AD identification. Ju et al. [52] constructed a brain 
network by computing the functional connectivity of brain regions. 

In the diagnosis of Alzheimer’s disease (AD), identifying AD patients 
from health control (HC) subjects is a very primary work, which will 
have a large impact on a patient in clinic. Hence, the first comparison 
experiment is conducted on the AD/HC data set. Results of the other 
seven state-of-the-art comparison approaches and the proposed AD- 
WTEF are listed in Table 2. According to Table 2, it can be seen that 
ACC of the proposed AD-WTEF outperforms the results of the other 
seven comparative methods, which reaches to 93.93%. Obviously this 
result of our AD-WTEF is better than 92.91% of the best comparative 
method, and has 1.02% improvements, which means that there are more 
rooms for the AD-WTEF to improve its classification performance. In 
addition, Se and Sp of the proposed AD-WTEF are also better than those 
of the best comparative method, and the gaps are 1.17% and 0.47%, 
respectively. Experimental results shown in Table 2 demonstrate the 
reasonableness of using the wavelet transform technique for the sMRI 
image. 

Once a person is diagnosed as a patient with AD, identification of the 
stage is very important. So experiments on MCI/HC and AD/MCI data 
sets are also performed to compare with the other seven comparative 

methods. And experimental results are shown in Tables 3 and 4 , 
respectively. From experimental results of Tables 3 and 4, it can be seen 
that performance of the proposed AD-WTEF is slightly inferior to the 
best comparative method on MCI/HC data set, and marginally superior 
to the best comparative method on AD/MCI data set. There are two-fold 
reasons to this phenomenon, firstly, MCI is an asymptomatic and tran-
sitional stage of AD, the conversion of a health person from health 
control stage to mild cognitive impairment stage produces subtle 
structural and functional changes in MRI images of the brain. Therefore, 
these changes are very difficult to be captured not only by energy fea-
tures extracted based on the wavelet transform, but also by the other 
spatial features. Secondly, the wavelet transform is a process with in-
formation redundancy, some useful and discriminative information is 
possibly covered up by redundancy, eventually causing the discrimina-
tive performance decrease of the proposed AD-WTEF. Explanations to 
this phenomenon also indicate the research direction of reducing 
redundancy of the wavelet transform and capturing fine information of 
the sMRI image in our future work. 

Prediction of conversion from MCI to AD is of crucial importance, for 
that, it is very necessary to classify mild cognitive impairment (MCI) 
subjects into MCIc who will convert to AD after 18 months and MCInc 
who will not convert into AD after 18 months. To validate this ability of 
the proposed AD-WTEF, MCIc/MCInc data set is constructed to test the 
proposed AD-WTEF, and ACCs of the other seven comparison ap-
proaches and the proposed AD-WTEF are shown in Table 5. It can be 
seen from Table 5 that ACC, Se and Sp of the proposed AD-WTEF 
consistently outperform those of the best comparative method, which 
have 1.62%, 0.37%, and 1.08% improvements respectively. Experi-
mental results on the challenging MCIc/MCInc data set further demon-
strate the effectiveness of the proposed AD-WTEF in prediction of a 
person with converted MCI from stable MCI patient. 

To extensively verify the discrimination of the proposed AD-WTEF, 
we compare WTEF with voxel, volume, and cortical thickness-based 
features on AD/HC, AD/MCI, MCI/HC, and MCIc/MCInc data sets 
using nearest neighbor (NN) classifier. For the NN classifier, we use the 
Chi-square distance shown in Eq. (9) as its metric. In the following, the 
voxel-based feature extracted by making statistics on voxels is denoted 
as VoxF, the volume-based feature extracted by summing voxels in the 
volume that is segmented from the GM image is denoted as VolF, and the 
cortical thickness-based feature extracted by computing distances of the 
cortical thickness is denoted as CorTF. ACCs of VoxF+NN, VolF+NN, 
CorTF+NN, and the proposed WTEF+NN are listed in Table 6. It is 
obviously seen from Table 6 that the proposed WTEF consistently out-
performs the VoxF, VolF, and CorTF in terms of using the NN classifier, 
which demonstrate the discriminative performance of the proposed 
WTEF. The reason is three-fold: Firstly, the GM image is analyzed 
globally, which can guarantee that more useful information is extracted 
and contained in the energy features; Secondly, wavelet transformation 
can effectively capture direction and multiscale information of the GM 
image, which can relatively be better to represent subtle differences 
between GM images of subjects with AD, MCI and HC; Thirdly, advan-
tages both of the spatial and the transformation domain-based methods 
are contained in the proposed AD-WTEF, so, the proposed WTEF can 

Table 2 
Experimental ACCs, Ses, and Sps of the other seven state-of-the-art comparison 
approaches and the AD-WTEF on AD/HC data set.  

Method ACC (%) Se (%) Sp (%) 

Jha et al. [59] 90.16 90.22 90.15 
Ahmed et al. [49] 86.40 77.61 93.28 
Zhang et al. [60] 92.70 92.67 92.77 
Khedher et al. [50] 88.96 92.35 86.24 
Dai et al. [58] 90.81 92.59 90.33 
Li et al. [8] 87.51 87.60 87.42 
Ju et al. [52] 92.91 93.00 92.85 
AD-WTEF 93.93 94.17 93.75  

Table 3 
Experimental ACCs, Ses, and Sps of the other seven state-of-the-art comparison 
approaches and the AD-WTEF on MCI/HC data set.  

Method ACC (%) Se (%) Sp (%) 

Jha et al. [59] 81.94 75.79 84.18 
Ahmed et al. [49] 76.29 72.30 81.53 
Zhang et al. [60] 80.67 76.79 86.98 
Khedher et al. [50] 82.41 84.12 80.48 
Dai et al. [58] 81.92 78.51 80.34 
Li et al. [8] 79.35 79.44 79.26 
Ju et al. [52] 81.17 82.26 81.11 
AD-WTEF 82.12 78.29 87.00  
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properly describe the sMRI image. 
Experimental results indicate that wavelet can be used to analyze the 

sMRI image in the frequency domain. Even though, sMRI is a kind of 
image containing a lot of noise and redundant information, which can be 
suppressed by the wavelet transformation. Therefore, energy distribu-
tions of the sMRI image can be depicted by directional and multiscale 
subbands. Additionally, we use the constructed brain mask to segment 
those wavelet subbands for obtaining EROIs, which guarantee that the 
energy distribution can be properly captured by the proposed WTEF. 
Finally, comparisons with the state-of-the-art methods on the four data 
sets testify that the AD-WTEF has the satisfactory discrimination and 
efficient performance in identifying subjects among AD, MCI and HC. 

Finally, we also give the mean running time (MRT, in seconds) of 
seven comparative methods and our AD-WTEF approach on MCIc/ 
MCInc data set in identifying 140 subjects. The programs all run on 
Matlab R2017a and computer with Intel(R) Core(TM) i7-4700 3.40GHz 
CPU 64bit system. MRTs of Jha et al. [59], Ahamed et al. [49], Zhang 
et al. [60], Khedher et al. [50], Dai et al. [58], Li et al. [8], Ju et al. [52], 
and our AD-WTEF are 7.37 s, 2.17 s, 8.46 s, 4.15 s, 10.03 s, 50.18 s, 
83.01 s, and 5.41 s respectively. Obviously, MRT of our AD-WTEF is 
superior to those of wavelet based [59,60], cortical network based [58] 
and deep learning based [8,52] methods, but is inferior to those of 
spatial domain-based method [49,50], which means our AD-WTEF is 
relatively efficient in AD identification. In AD-WTEF, wavelet trans-
formation is time-consuming, taking more than half the MRT. 

4.3. Parameter estimation 

Obviously, in the proposed method, parameters of the wavelet 
transform level L and the number of nearest neighbors K in the K-NN 

classifier need to be estimated for achieving an optimal performance in 
the classification stage. For the purpose of getting optimal estimation 
values of the wavelet transform level L and the number of nearest 
neighbors K, we conduct multiple estimation experiments on those four 
data sets. In each of these estimation experiments, ten-fold cross vali-
dation are performed, and each experiment are done ten times to obtain 
an average classification accuracy (ACC) as the unbiased experimental 
result. 

Fig. 5(a) shows ACCs of experiments on the four data sets with L = 1,
2,3. According to Fig. 5(a), it can be seen that the proposed AD-WTEF 
can obtain a best ACC when L = 1. Meanwhile, with the increase of L, 
ACCs of the proposed AD-WTEF decrease drastically. There are three- 
fold reasons for this phenomenon. Firstly, the wavelet transformation 
is different from the wavelet decomposition, which is a transformation 
with information redundancy, with the increase of L, more redundant 
information will be contained in the subbands, which is a main cause of 
decreasing the ACC. Secondly, the dimensionality of the proposed WTEF 
is related to L, hence, the number of energy features contained in the 
WTEF will be severely increased, and the stability of the structure of the 
proposed WTEF will become worse with L increasing. For example, 
when L = 3,4, the dimensions of the WTEF are 90 × 4 × 3 = 1080 and 
90× 4× 4 = 1440, respectably. Thirdly, with the increase of L, more 
macrostructural information is being predominant, nonetheless, the 
identification of AD from HC subjects mainly depends on microstruc-
tural differences, which is another cause of decreasing the ACC. 

For the K-NN classifier, Fig. 5(b) shows ACCs of experiments on the 
four data sets with different K values. As shown clearly in Fig. 5(b) 
where ACCs gradually decrease with the increase of K and the proposed 
WTEF can get the best experimental results when K = 1. Hence, the NN 
(namely 1-NN) classifier is selected to categorize subjects with AD, MCI 
and HC in this study. 

In summary, L = 1 is selected to be the optimal estimation value of 
wavelet transformation level, which implicitly reduces the dimension-
ality of the proposed WTEF to some extent. Meanwhile, the NN classifier 
is selected for AD classification. In terms of ACCs shown in Fig. 5, L = 1 
and K = 1 are used as the optimal parameter estimation values. 

5. Discussion 

In this section, we will find brain ROIs (corresponding to EROIs 
segmented from subbands, in the following, we consistently use ROI) 
related to AD by testing the discrimination of energy features of the 90 
ROIs. Due to the fact that each hemisphere of a brain contains 45 ROIs 
and the brain is symmetric, so ROIs in each hemisphere with the same 
name, for example precentral-gyrus-left and precentral-gyrus-right re-
gions, are regarded as one region in the following experiments to find 
ROI related to AD. That is, there are 45 ROIs left to be confirmed. And 
the serial number of each ROI is listed in Table 7. Moreover we regard 
ACC of the AD-WTEF as a reference, which means that a ROI will make 
the negative contribution to AD identification when ACC of the AD- 
WTEF with the ROI removed outperforms the reference, and vice versa. 

Firstly, we mainly find which ROI is discriminative in identifying AD 
from HC subjects. ACCs of the AD-WTEF with one ROI removed and the 
AD-WTEF on the AD/HC data set are shown in Fig. 6. As shown in Fig. 6, 
there are heterogeneous discriminative powers for different ROIs in 
diagnosing a subject whether with AD or not, which validates that 
Alzheimer is a disease that spans multiple ROIs and lesions of the ROIs 
are different. Additionally, from Fig. 6, it can be seen that the fist ten 
positive ROIs related to AD, numbered as 1 (precentral gyrus), 2 (su-
perior frontal gyrus), 4 (middle frontal gyrus), 10 (supplementary motor 
area), 15 (Insula), 17 (median cingulate paracingulate gyri), 20 (para-
hippocampus), 21 (amygdala), 32 (supramarginal gyrus), and 40 (heschl 
gyrus) based on Table 7, have made more contributions definitely in 
identifying AD, which consist with the findings of existing works [65, 
66]. While compared with those previous works, we also find another 
some ROIs related to AD identification, such as 10 (supplementary 

Table 4 
Experimental ACCs, Ses, and Sps of the other seven state-of-the-art comparison 
approaches and the AD-WTEF on AD/MCI data set.  

Method ACC (%) Se (%) Sp (%) 

Jha et al. [59] 78.48 75.35 79.98 
Ahmed et al. [49] 74.51 77.94 71.23 
Zhang et al. [46] 85.89 72.21 88.65 
Khedher et al. [50] 84.53 88.75 83.07 
Dai et al. [58] 85.92 82.46 87.59 
Li et al. [8] 77.25 77.34 77.16 
Ju et al. [52] 84.37 85.46 84.31 
AD-WTEF 86.40 82.11 89.91  

Table 5 
Experimental ACCs, Ses, and Sps of the other seven state-of-the-art comparison 
approaches and the proposed AD-WTEF on MCIc/MCInc data set.  

Method ACC (%) Se (%) Sp (%) 

Jha et al. [59] 69.21 70.74 67.45 
Ahmed et al. [49] 68.72 67.38 70.69 
Zhang et al. [60] 72.86 69.55 75.49 
Khedher et al. [50] 70.11 68.61 74.16 
Dai et al. [58] 71.04 65.98 75.56 
Li et al. [8] 69.38 69.47 69.29 
Ju et al. [52] 72.32 70.41 75.26 
AD-WTEF 74.48 71.11 76.64  

Table 6 
ACCs (%) of VoxF+NN, VolF+NN, CorTF+NN, and the WTEF+NN on AD/HC, 
AD/MCI, MCI/HC and MCIc/MCInc data sets.  

Features AD/HC AD/MCI MCI/HC MCIc/MCInc 

VoxF+NN 80.71 60.87 78.80 55.00 
VolF+NN 67.75 63.68 63.39 56.91 
CorTF+NN 89.71 69.04 62.52 59.05 
WTEF+NN 93.93 86.40 82.12 74.48  
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Fig. 5. Parameter estimation experiments on AD/HC, AD/MCI, MCIc/MCInc and MCI/HC four data sets. (a) ACCs of experiments on four data sets with L = 1,2,3. 
(b) ACCs of experiments on four data sets with different K values. 

Table 7 
Forty-five ROIs contained in a brain. Owing to the symmetry of a human brain, each ROI name corresponds to two brain regions. In fact, there are 90 ROIs in a brain.  

Number Brain ROI name Number Brain ROI name Number Brain ROI name 

1 Precentral-Gyrus 16 Anterior-Cingulate-Paracingulate-Gyri 31 Inferior-Parietal-Gyri 
2 Superior-Frontal-Gyrus 17 Median-Cingulate-Paracingulate-Gyri 32 Supramarginal-Gyrus 
3 Superior-Frontal-Gyrus-Orbital 18 Posterior-Cingulate-Gyrus 33 Angular-Gyrus 
4 Middle-Frontal-Gyrus 19 Hippocampus 34 Precuneus 
5 Middle-Frontal-Gyrus-Orbital 20 Parahippocampus 35 Paracentral-Lobule 
6 Inferior-Frontal-Gyrus-Opercular 21 Amygdala 36 Caudate-Nucleus 
7 Inferior-Frontal-Gyrus-Triangular 22 Calcarine-Fissure-Surrounding-Cortex 37 Lenticular-Nucleus-Putamen 
8 Inferior-Frontal-Gyrus-Orbital 23 Cuneus 38 Lenticular-Nucleus-Pallidum 
9 Rolandic-Operculum 24 Lingual-Gyrus 39 Thalamus 
10 Supplementary-Motor-Area 25 Superior-Occipital-Gyrus 40 Heschl-Gyrus 
11 Olfactory-Cortex 26 Middle-Occipital-Gyrus 41 Superior-Temporal-Gyrus 
12 Superior-Frontal-Medial 27 Inferior-Occipital-Gyrus 42 Temporal-Pole-Superior-Temporal 
13 Superior-Frontal-Gyrus-Medial-Orbital 28 Fusiform-Gyrus 43 Middle-Temporal-Gyrus 
14 Gyrus-Rectus 29 Postcentral-Gyrus 44 Temporal-Pole-Middle-Temporal 
15 Insula 30 Superior-Parietal-Gyrus 45 Inferior-Temporal-Gyrus  

Fig. 6. ACCs of the AD-WTEF with one ROI removed on the AD/HC data set. Names of removed ROIs are listed in Table 7. The AD-WTEF is numbered as 46.  
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motor area) and 32 (supramarginal gyrus). However, some ROIs such as 
22 (calcarine fissure surrounding cortex) and 26 (middle occipital 
gyrus), have made negative contributions to identifying AD. According 
to Fig. 6, ACC of the AD-WTEF is further improved when a negative ROI 
is excluded, and ACC of the AD-WTEF has reached to 95.85%. 

To find important ROIs in identifying AD from MCI subjects, exper-
iments with one ROI removed are also performed on the AD/MCI data 
set, and ACCs of the AD-WTEF with one ROI removed and the AD-WTEF 
are shown in Fig. 7. As shown in Fig. 7, all ROIs are categorised into 
positive contribution and negative contribution classes, no-contribution 
ROI is not found. Less than half of the ROIs do positive contributions in 
identifying AD from MCI subjects, the reason is that subjects with MCI 
are heterogeneous and MCIc patients have AD-like atrophy patterns in 
their MRI images. And ACC of the AD-WTEF has reached to 88.65% with 
a redundant ROI excluded in identifying AD from MCI subjects. In 
addition, the first ten positive ROIs numbered as 1 (precentral gyrus), 11 
(olfactory cortex), 12 (superior frontal medial), 19 (hippocampus), 21 
(amygdala), 22 (calcarine fissure surrounding cortex), 31 (inferior pa-
rietal gyri), 35 (paracentral lobule), 39 (thalamus), and 40 (heschl 
gyrus), are more discriminative in identifying AD from MCI subjects. 
However, there are relatively more negative ROIs, such as 18 (posterior 
cingulate gyrus), 20 (parahippocampus), and 36 (caudate nucleus). 
Results of this experiment show that differences between the sMRI im-
ages of subjects with AD and MCI can be captured by the WTEF, and also 
verify the reasonability of using the wavelet transform to the brain 
image and of treating the sMRI image as a whole in extracting the energy 
features. 

To further obtain important ROIs related to AD in identifying MCI 
patients from HC subjects, experiments with one ROI removed are 
conducted on the MCI/HC data set, and Fig. 8 shows ACCs of the AD- 
WTEF with one ROI removed and the AD-WTEF. As shown in Fig. 8, 
most of ROIs do cooperative contributions to identifying MCI from HC 
subjects. While some ROIs such as 30 (superior parietal gyrus) deterio-
rate the discrimination of the AD-WTEF, and ACC of the AD-WTEF 

changes from 80.85% to 83.05% when only a negative ROI is 
removed, so feature selection in the final stage of extracting features 
from the sMRI image is absolutely necessary. According to Fig. 8, the 
first ten positive ROIs related to AD are 9 (rolandic operculum), 10 
(supplementary motor area), 12 (superior frontal medial), 14 (gyrus 
rectus), 21 (amygdala), 32 (supramarginal gyrus), 34 (precuneus), 35 
(paracentral lobule), 36 (caudate nucleus), and 40 (heschl gyrus). There 
are eight negative ROIs, including 6 (interior frontal gyrus opercular), 8 
(interior frontal gyrus orbital), 22 (calcarine fissure frontal cortex) and 
so on. Additionally, 24 (lingual gyrus), 25 (superior occipital gyrus), 28 
(fusiform gyrus), and 31 (interior parietal gyri) are no-contribution ROIs 
in identifying MCI from HC subjects. 

To find the useful ROIs in differentiating MCIc from MCInc patients, 
experiments of the AD-WTEF with one ROI removed are performed on 
the MCIc/MCInc data set. ACCs of the AD-WTEF with one ROI removed 
and the AD-WTEF are shown in Fig. 9. From ACCs of Fig. 9, most of ROIs 
make a positive contribution to identifying MCIc from MCInc patients, 
but the contribution is small. Therefore, we can get the conclusion that 
lesions of different ROIs at MCI stage are subtle, but have occurred in 
many regions, and cognitive function of a person is gradually declining 
with the development of brain lesions. Hence, identifying MCIc from 
MCInc patients makes more sense and is important in clinic. As is shown 
in Fig. 9, the first ten positive ROIs related to AD are 1 (precentral 
gyrus), 2 (superior frontal gyrus), 9 (rolandic operculum), 10 (supple-
mentary motor area), 12 (superior frontal medial), 19 (hippocampus), 
20 (parahippocampus), 21 (amygdala), 35 (paracentral lobule), and 44 
(temporal pole middle temporal), respectively. While only five ROIs are 
negative and two ROIs are no-contribution. Considering the findings of 
experiments on MCIc/MCInc data set, it validates again that the wavelet 
can be used to transform the sMRI image for extracting energy features 
from its subbands. 

According to the experiments above, it can be found that ROIs such 
as 2 (superior frontal gyrus), 4 (middle frontal gyrus), 10 (supplemen-
tary motor area), 12 (superior frontal medial), 21 (amygdala), 35 

Fig. 7. ACCs of the AD-WTEF with one ROI removed on the AD/MCI data set. Names of removed ROIs are listed in Table 7. The AD-WTEF is numbered as 46.  
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(paracentral lobule), and 36 (caudate nucleus), are important in diag-
nosing AD patients. For the four experiments to find ROI related to AD, 
we find that 21 (amygdala) is the only brain tissue that is consistently 
appeared in the fist ten ROIs, and differences of subtle tissue lesions can 
be captured by the AD-WTEF in differentiating subjects with AD, MCI, 
and HC. For the sake of visualization and clarity, the first ten positive 
ROIs found on the AD/HC, AD/MCI, MCI/HC and MCIc/MCInc data sets 
are separately depicted in Fig. 10, which are marked in red. It is clear 
from Fig. 10 that not all the brain tissues play the same important role in 
identifying AD. It implicitly means that the degree of brain lesions is 
different at different stages of AD. So feature selection is apparently 

needed so that those discriminative features can be extracted. Further-
more, it also verifies that the transformation domain-based tool can be 
used for analyzing the sMRI image. Overall, experiments to find ROI 
related to AD on four data set demonstrate the rationality of using 
wavelet to extract energy features from the sMRI image. 

6. Conclusions 

In this study, a novel method (namely AD-WTEF) is proposed to 
represent the sMRI image by extracting the wavelet transformation en-
ergy feature (WTEF) based on the constructed brain mask in 

Fig. 8. ACCs of the AD-WTEF with one ROI removed on the MCI/HC data set. Names of removed ROIs are listed in Table 7. The AD-WTEF is numbered as 46.  

Fig. 9. ACCs of the AD-WTEF with one ROI removed on the MCIc/MCInc data set. Names of removed ROIs are listed in Table 7. The AD-WTEF is numbered as 46.  
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automatically identifying AD patients. Concretely, scans of the pro-
cessed sMRI image are firstly transformed into directional and multi-
scale subbands by wavelet. And then the subbands are segmented based 
on the constructed brain mask to obtain EROIs in constructing their 
subband energy feature vectors. By concatenating those energy feature 
vectors, we can obtain WTEF of the sMRI image. Experimental results 
demonstrate that AD-WTEF can effectively identify AD patients, owing 
to the fact that advantages both of the spatial domain-based and the 
transformation domain-based methods are fully used and subbands can 
be reasonably segmented by the constructed brain mask. However, there 

are some drawbacks of the proposed AD-WTEF, for example, the wavelet 
transform is a non-downsampling process which causes information 
redundancy, and the negative ROIs are also used to construct the WTEF. 
Thus, the contourlet transform is suggested to be used for reducing the 
information redundancy, and appropriate brain region selections are 
also suggested to find those ROIs related to AD when extracting energy 
features. Therefore, in our future work, we will focus on reducing the 
information redundancy. In addition, exploring network information or 
dynamical information to improve the accuracy (e.g. fMRI data) by 
network biomarker [67] or dynamic network biomarker [68] is also an 

Fig. 10. First ten positive brain ROIs in identifying subjects with AD, MCI, and HC. The first row is on the AD/HC data set, the second row is on the MCIc/MCInc data 
set, the third row is on the MCI/HC data set, and the last row is on the AD/MCI data set. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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important future topic in identification of AD from HC subjects. 

Conflict of interest 

The authors declare no conflict of interest. 

Acknowledgements 

This paper was supported by the National Natural Science Founda-
tion of China (Grant No. 61873202, 31930022, 61473232, 91430111, 
31771476, 81471047, and 11871456), National Key R&D Program 
(Grant No. 2017YFA0505500 and 2016YFC0903400), Strategic Priority 
Research Program of the Chinese Academy of Sciences (Grant No. 
XDB38040400), Natural Science Foundation of Shanghai (Grant No. 
17ZR1446100), and Shanghai Municipal Science and Technology Major 
Project (Grant No. 2017SHZDZX01). 

Data collection and sharing for this project was funded by the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of 
Health Grant U01 AG024904) and DOD ADNI (Department of Defense 
award number W81XWH-12-2-0012). ADNI is funded by the National 
Institute on Aging, the National Institute of Biomedical Imaging and 
Bioengineering, and through generous contributions from the following: 
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Founda-
tion; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb 
Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, 
Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and 
its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO 
Ltd.; Janssen Alzheimer Immunotherapy Research & Development, 
LLC.; Johnson & Johnson Pharmaceutical Research & Development 
LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, 
LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharma-
ceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda 
Pharmaceutical Company; and Transition Therapeutics. The Canadian 
Institutes of Health Research is providing funds to support ADNI clinical 
sites in Canada. Private sector contributions are facilitated by the 
Foundation for the National Institutes of Health (www.fnih.org). The 
grantee organization is the Northern California Institute for Research 
and Education, and the study is coordinated by the Alzheimer’s Thera-
peutic Research Institute at the University of Southern California. ADNI 
data are disseminated by the Laboratory for Neuro Imaging at the Uni-
versity of Southern California. 

Appendix A. Supplementary data 

Supplementary data associated with this article can be found, in the 
online version, at https://doi.org/10.1016/j.artmed.2020.101940. 

References 

[1] Wu X, Li J, Ayutyanont N, et al. The receiver operational characteristic for binary 
classification with multiple indices and its application to the neuroimaging study of 
Alzheimer’s disease. IEEE/ACM Trans Comput Biol Bioinf 2013;10(1):173–80. 

[2] Zhang F, Tian S, Chen S, et al. Voxel-based morphometry: improving the diagnosis 
of Alzheimer’s disease based on an extreme learning machine method from the 
ADNI cohort. Neuroscience 2019;414:273–9. 
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[7] Korábečný J, Nepovimová E, Cikánková T, et al. Newly developed drugs for 
Alzheimer’s disease in relation to energy metabolism, cholinergic and 
monoaminergic neurotransmission. Neuroscience 2018;370:191–206. 

[8] H. Li, M. Habes, D.A. Wolk, et al., A deep learning model for early prediction of 
Alzheimer’s disease dementia based on hippocampal MRI, ArXiv abs/1904.07282. 

[9] Hao X, Li C, Yan J, et al. Identification of associations between genotypes and 
longitudinal phenotypes via temporally-constrained group sparse canonical 
correlation analysis. Bioinformatics 2017;33(14):i341–9. 

[10] Masscli D, DiNuzzo M, Serra L, et al. Disruption of semantic network in mild 
Alzheimer’s disease revealed by resting-state fMRI. Neuroscience 2018;371:38–48. 

[11] Leung KK, Barnes J, Modat M, et al. Brain MAPS: an automated, accurate and 
robust brain extraction technique using a template library. Neuroimage 2011;55 
(3):1091–108. 

[12] Behrmann J, Etmann C, Boskamp T. Deep learning for tumor classification in 
imaging mass spectrometry. Bioinformatics 2017;34(7):1215–23. 

[13] Wan M, Gu G, Sun J. A level set method for infrared image segmentation using 
global and local information. Remote Sens 2018;10(7):1039–75. 

[14] Feng J, Liu X, Dong Y, et al. Structural difference histogram representation for 
texture image classification. IET Image Process 2016;11(2):118–25. 

[15] Zhang F, Li Z, Zhang B, et al. Multi-modal deep learning model for auxiliary 
diagnosis of Alzheimer’s disease. Neurocomputing 2019;361:185–95. 

[16] Greenlaw K, Szefer E, Graham J, et al. A Bayesian group sparse multi-task 
regression model for imaging genetics. Bioinformatics 2017;33(16):2513–22. 

[17] Casanova R, Wagner B, Whitlow CT, et al. High dimensional classification of 
structural MRI Alzheimer’s disease data based on large scale regularization. Front 
Neuroinform 2011;5:22–30. 

[18] Misra C, Fan Y, Davatzikos C. Baseline and longitudinal patterns of brain atrophy in 
MCI patients, and their use in prediction of short-term conversion to AD: results 
from ADNI. Neuroimage 2009;44(4):1415–42. 

[19] Zhang D, Wang Y, Zhou L, et al. Multimodal classification of Alzheimer’s disease 
and mild cognitive impairment. Neuroimage 2011;55(3):856–67. 

[20] Liu S, Liu S, Cai W, et al. Multimodal neuroimaging feature learning for multiclass 
diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng 2015;62(4):1132–40. 

[21] Li J, Gong Y, Tang X. Hierarchical subcortical sub-regional shape network analysis 
in Alzheimer’s disease. Neuroscience 2017;366:70–83. 

[22] Magnin B, Mesrob L, hun SK. Support vector machine-based classification of 
Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 2009;51 
(2):73–83. 

[23] Zhang J, Yu C, Jiang G, et al. 3D texture analysis on MRI images of Alzheimer’s 
disease. Brain Imag Behav 2012;6(1):61–9. 

[24] Pachauri D, Hinrichs C, Chung MK, et al. Topology-based kernels with application 
to inference problems in Alzheimer’s disease. IEEE Trans Med Imag 2017;30(10): 
1760–70. 

[25] Lei B, Yang P, Wang T, et al. Relational-regularized discriminative sparse learning 
for Alzheimer’s disease diagnosis. IEEE Trans Cybern 2017;47(4):1102–13. 

[26] Dong Y, Feng J, Liang L, et al. Multiscale sampling based texture image 
classification. IEEE Signal Process Lett 2017;24(5):614–8. 

[27] Zhang Y, Wang S, Phillips P, et al. Detection of Alzheimer’s disease and mild 
cognitive impairment based on structural volumetric MR images using 3D-DWT 
and WTA-KSVM trained by PSOTVAC. BioMed Sign Process Contr 2015;21:58–73. 

[28] Yang X, Tan MZ, Qiu A. CSF and brain structural imaging markers of the 
Alzheimer’s pathological cascade. PLOS ONE 2012;7(12):e47406–12. 

[29] Shen D, Davatzikos C. HAMMER: hierarchical attribute matching mechanism for 
elastic registration. IEEE Trans Med Imag 2002;21(11):1421–39. 

[30] Mohammadi-Nejad AR, Hossein-Zadeh GA, Soltanian H, et al. Structured and 
sparse canonical correlation analysis as a brain-wide multi-modal data fusion 
approach. IEEE Trans Med Imag 2017;36(7):1438–48. 

[31] Sherbet GV, Woo WL, Dlay SS. Application of artificial intelligence-based 
technology in cancer management: a commentary on the deployment of artificial 
neural networks. Anticancer Res 2018;38(12):6607–13. 

[32] Nalepa J, Lorenzo PR, Marcinkiewicz M, et al. Fully-automated deep learning- 
powered system for DCE-MRI analysis of brain tumors. Artif Intell Med 2020;102: 
101769. 

[33] Sengupta S, Singh A, Leopold HA, et al. Ophthalmic diagnosis using deep learning 
with fundus images – a critical review. Artif Intell Med 2020;102:101758. 

[34] Arifoglu D, Bouchachia A. Detection of abnormal behaviour for dementia sufferers 
using convolutional neural networks. Artif Intell Med 2019;94:88–95. 

[35] Bernal J, Kushibar K, Asfaw DS, et al. Deep convolutional neural networks for brain 
image analysis on magnetic resonance imaging: a review. Artif Intell Med 2019;95: 
64–81. 

[36] Lamy JB, Sekar B, Guezennec G, et al. Explainable artificial intelligence for breast 
cancer: a visual case-based reasoning approach. Artif Intell Med 2019;94:42–53. 

[37] Li X, Shen L, Xie X, et al. Multi-resolution convolutional networks for chest X-ray 
radiograph based lung nodule detection. Artif Intell Med 2020;103:101744. 

[38] Chupin M, Gérardin E, Cuingnet R, et al. Fully automatic hippocampus 
segmentation and classification in Alzheimer’s disease and mild cognitive 
impairment applied on data from ADNI. Hippocampus 2009;19(6):579–87. 

[39] Dukart J, Kherif F, Mueller K, et al. Generative FDG-PET and MRI model of aging 
and disease progression in Alzheimer’s disease. PLoS Comput Biol 2013;9(4): 
e1002987–97. 
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